Avoiding materials jeopardy – why consistent materials definitions in PLM matter

Avoiding materials jeopardy

What does it mean to define a material as we move along the product lifecycle, from concept, through to engineering design, simulation, prototyping, manufacture, and distribution to the customer? A ‘material’ means one thing to a material engineer, something else to a CAD designer, and another to someone in manufacturing. Companies can spend weeks of wasted effort ensuring consistency or attempting to find or verify data.

Tests and analyses are repeated (at cost), and bills of materials need to be re-mapped. Risks and errors creep into the product due to inaccurate specifications, and ineffectual simulation results. This can lead to an increase in product failures, warranty issues, and product recalls, and the processes that ensure regulatory compliance, version control, and consistency across CAD and PLM breakdown.

Does this sound familiar? If you’re not managing materials data effectively and consistently across your design and development process by integrating singular materials definitions within your PLM, that’s exactly what you’re doing too. And at the very least, these inconsistencies will be stifling innovation, and increasing the time-to-market. So how can we avoid playing materials jeopardy?

Well, we first need to appreciate the nature of the data we want to capture, analyse, use, and re-use. Materials data is vast. The inter-connections that exist between data are complex to manage and navigate, and the data itself needs to be paired with understanding. Maintaining a strict level of consistency of materials definitions is often made more difficult by that data being stored in disconnected databases. And, materials data is not static – it evolves, and does so independently of the product lifecycle.

These challenges can be addressed through a “materials intelligence” view of the data. With this approach, a consistent materials information strategy comprising a single, corporate “gold source” of materials data, integrated with all design and simulation tools is implemented across the company. The GRANTA MI materials information management system, for example, handles the depth of materials information – including all its inter-relationships. Integration options mean that this data can be accessed within CAD, CAE, and PLM systems, with full traceability. Materials are connected to product data, and companies can cost-effectively maintain digital continuity throughout the design and development process.

Of course, whether to use a materials information management system like GRANTA MI or not is a decision that should be made after careful consideration of the options. In the meantime, the bigger picture here is that more companies need to starting thinking about the issues outlined above, especially the consequences and missed opportunities arising from inconsistent materials definitions. However you choose to handle your vital materials information, do so as part of a carefully thought-out materials information strategy.

How to assess your company’s Materials IQ

Five steps to raising your materials IQ

The management of materials information is just one piece of the ‘materials intelligence’ puzzle. Discover how to reduce design cycles, minimize risk, improve product quality, aid compliance, and much more, by taking these five steps to increasing your Materials IQ.

Continue reading

Additive Manufacturing – Will anyone think of the data?

Organizations make big investments in Additive Manufacturing. AM machines, new materials, experts in AM processes, testing, analysis, and simulation – no expense is spared. These costs feel justified in the light of the benefits that AM can bring – parts that can be printed-to-order, new lightweight components with previously unachievable shapes, or reduced manufacturing lead times.

But, there is one aspect we might be forgetting. Will anyone think of the data? Specifically, are we investing enough into managing the complex data created from our AM projects and, if we do, are we thinking about it early enough?

Continue reading

From fashion to flight: the diverse users of CES Selector

How Leading Companies Avoid Using the Wrong Materials

Speaking at a recent webinar, experts from Honeywell Aerospace, Saudi Aramco, and Burberry presented the benefits of systematic materials selection.

With roots in fashion, oil and gas, and aerospace, these organizations are not only diverse in their focus, but in their experiences of using the CES Selector software. The Tempe site within Honeywell Aerospace has been using the software since 2001. Principal Materials Engineer John Perek presented two examples of how it reduced selection time, and minimized cost. The first was a materials substitution project for a pressure regulator housing that was experiencing delayed cracking after molding. The second example involved the necessary replacement of a Be-Cu pitot tube to comply with the restriction of hazardous substances (RoHS) legislation.

Continue reading

10 Ways Material Information Management will make your Chief Executive Happy


If you haven’t been involved in a material information management project, you might think it’s only of interest to materials engineers.

However, the work involved in having a single, organized source of materials information creates benefits that spread far wider than just the engineering department. In fact, the advantages go right to the top of the chain and help address the key goals of a business.

Here are 10 ways that materials information management benefit the entire company and make your Chief Executive happy.

Continue reading

Is the future of materials science and AI intertwined?

AI and materials science


My mother always tells the story of how I learnt to type my name on a computer before I could put pen to paper. I grew up with a love of computers and am not ashamed to say that the topic of artificial intelligence (AI) – covering the gamut of machine learning, and deep learning – is a particular passion. You can imagine my delight, therefore, when I came across not one but two recent articles on how the future of materials science and AI may be intertwined.

Continue reading

Composite complications – why hybrid materials are a particular materials information menace

Composite complications – why hybrid materials are a particular materials information menace

With a broad range of applications like corrosion protection, scratch resistance, and structural parts, hybrid materials receive a great deal of attention – particularly in high-performance engineering sectors such as aerospace, and automotive. As well as boasting high specific strength and stiffness, hybrid materials and structures like sandwich panels, foams, lattices, and composites, have the potential to reduce the environmental impact of those industries. But how can we ensure that the full benefits of this class of material are realized? And what challenges are there within the design and development process that could prevent this from happening?

Continue reading

Simulation for the Automotive industry – Babbage was right, so what are we going to do about it?


Can users of today’s advanced simulation methods for Automotive still learn from sentiments expressed 150 years ago?

On two occasions I have been asked, “Pray, Mr. Babbage, if you put into the machine wrong figures, will the right answers come out?” … I am not able rightly to apprehend the kind of confusion of ideas that could provoke such a question.

So said Charles Babbage, widely considered the father of the computer, way back in 1864.  He was obviously right – but are we still guilty of the confusion he identifies?

Continue reading

The cost of trial and error in Additive Manufacturing

Additive Manufacturing — Understanding critical process parameters and supporting the digital thread


The rate of adoption of additive manufacturing (AM) is incredible. AM brings a physicality to ideas, and offers ways for people to touch upon solutions that would have been impossible to otherwise imagine. Equally impressive is the scale of investment in machines for producing AM parts, which is of course supported by business cases highlighting reduced development times, fewer prototype costs, reduced part counts, and flexible manufacturing. But, I am seeing more and more evidence that the prescribed route to this ‘Nirvana’ is via a process of trial and error for settings, powders, and even machine capability.

Continue reading

Materials shortage – what next?

Materials shortage – what next?


Southern Texas is the hub of the US’ supply of speciality chemicals and petrochemicals; the basis of plastics used to manufacture everything from water bottles to pill coatings. So, when Storm Harvey hit the Gulf Coast in 2017, companies within the US and worldwide were affected. For example, the close of company Arkema alone resulted in the loss of supply of 50% of the US’ supply of ethylene and polyethylene, and 40% of its chloralkaline and polyvinyl chloride.

When the availability of materials can be cut drastically short at a moment’s notice, how can companies be prepared to respond?

Continue reading