Tag Archives: alloys

Speeding up the discovery of new alloys

Granta recently wrapped-up its participation in Accelerated Metallurgy, a European Union (EU) collaborative project focused on speeding up discovery of new alloys. What lessons did we learn?

Alloys have been vital throughout human civilization – think of the importance of brass and bronze in ancient times. Today, production and use of alloys accounts for an amazing 46% of all European Union manufacturing value and 11% of the EU’s total GDP, contributing over €1.5 trillion annually to the EU economy. It’s a long way from the Bronze Age to modern super alloys, yet we are still a very long way from exploring all of the possible combinations of today’s 61 commercially-available metals. The reason is that current approaches to manufacturing and testing potential alloys are time-consuming, labour intensive, and expensive – making comprehensive studies unsustainable.

Continue reading

Keeping up to date with the gold standard of materials reference data

plane-thumbnailThe world of materials never stands still. New technological challenges constantly drive the need to explore new materials that offer properties that no existing material can deliver. It is vital to maintain a single, up-to-date source of materials property data, to keep abreast of all these new developments. How else can you ensure that your designers and engineers have the data they need for materials selection, product design, simulation,                                     qualification, and more?

Continue reading

No match for nature? The amazing properties of bone

boneThere are some things that nature just gets right. Take bone, for example. This typically has an elastic modulus similar to concrete, but is 10 times stronger in compression and around 50 times stronger in tension. It has a compressive strength similar to stainless steel, but is three times lighter. Not only that, but as a living tissue, it can adapt to meet property requirements. Bones in the legs, such as the femur and tibia, are typically much stronger than bones found in the arm, for example. And its properties aren’t fixed: the graph below shows how bones change in behavior with age, as explored within Granta’s Human Biological Materials database. What’s more, bones adapt depending on external conditions – a constant challenge in space as bones weaken if they are not loaded (as happens in zero-gravity). Continue reading

Lightweight aluminum beryllium alloys

MIThe 22nd MMPDS Coordination Meeting was held last week (October 23-26), with members meeting to discuss the ongoing development of the Metallic Materials Properties Development and Standardization (MMPDS) data. But what is MMPDS, and who uses it? A good way to find out is to take one of the new materials in the latest release, and ask some questions about why it’s in there. Lightweighting is certainly a hot topic at the moment, so perhaps the lightweight aluminum beryllium alloy (AMS 7911) highlighted in MMPDS-06 would be a good example. Continue reading