Tag Archives: medical

How Cook Medical’s regulatory team uses materials data

How Cook Medical’s regulatory team uses materials data

 

This week, I presented in a collaborative webinar with Cook Medical’s David Chadwick, Director of Regulatory Affairs, covering the best practise when applying materials data and predicate device information in healthcare. The healthcare industry faces a colossal task when choosing materials for use in new or existing medical devices. For those unfamiliar with the medical industry, the number of factors which need to be carefully considered when selecting a material for use in the human body can seem overwhelming; engineering properties, biocompatibility, effect of sterilization treatments, material-drug interactions, regulatory approval processes such as FDA approval and CE Marking, just to name a few. Continue reading

Additive Manufacturing, the medical industry,
and materials information

Additive ManufacturingI recently attended the Additive Manufacturing for MedTech, BioPrinting, Medicine and Dental Summit in Boston and it was interesting to review the latest trends in the industry and think about their materials information implications. The event concentrated on the main challenges in Additive Manufacturing (AM) for medical, bringing together both major device companies (Stryker, GE Healthcare, Medtronic) and smaller consulting firms. It explored the latest printing techniques, ground-breaking research, and innovative materials for improving AM strategies, implementation and processes.

Continue reading

No match for nature? The amazing properties of bone

boneThere are some things that nature just gets right. Take bone, for example. This typically has an elastic modulus similar to concrete, but is 10 times stronger in compression and around 50 times stronger in tension. It has a compressive strength similar to stainless steel, but is three times lighter. Not only that, but as a living tissue, it can adapt to meet property requirements. Bones in the legs, such as the femur and tibia, are typically much stronger than bones found in the arm, for example. And its properties aren’t fixed: the graph below shows how bones change in behavior with age, as explored within Granta’s Human Biological Materials database. What’s more, bones adapt depending on external conditions – a constant challenge in space as bones weaken if they are not loaded (as happens in zero-gravity). Continue reading

Poly(methyl methacrylate): a biocompatible acrylic

medicalDiscovered in 1877 and patented in 1933, PMMA, or acrylic, is often used as a lighter, more shatter-resistant alternative to glass. It is easy to process and make, resulting in a low cost versatile material used for everything from windows in aquariums, to protecting the audience from stray pucks in ice hockey rinks, and even in shoes.

What is interesting about PMMA, though, is its biocompatibility. Despite being formed by polymerizing Methyl Methacrylate, an irritant, and possibly a carcinogen, PMMA is extremely biocompatible, resistant to long exposure to temperatures, chemistry and cell action of human tissue. Continue reading

100 Years of Stainless Steel

oil-rigGranta’s recent trip to MS&T in Pittsburgh, the Steel City, reminded me that this year marks a hundred years since the invention of stainless steel, or at least since the first patents were granted to Strauss and Maurer in 1912 for the austenitic stainless steel they branded Nirosta. At about the same time in Sheffield, England, Harry Brearley discovered a corrosion resistant martensitic alloy which, although designed for gun barrels, first found fame                                     as the new, shiny entrance canopy material for the Savoy Hotel. Continue reading